Journal of Organometallic Chemistry, 390 (1990) 323-331 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20749

Reaktionen von $(\eta^2$ -Formaldehyd)zirconocen-Dimer mit Heterokumulenen

Gerhard Erker *, Miguel Mena,

Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (F.R.G.)

Stefan Werner und Carl Krüger

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr (F.R.G.) (Eingegangen den 22. Januar 1990)

Abstract

The $(\eta^2$ -formaldehyde)zirconocene dimer $(Cp_2ZrOCH_2)_2$ (7) inserts CO_2 into the zirconium to carbon bond of the metallaoxirane moiety to give $[(Cp_2ZrOCH_2)(Cp_2ZrOCH_2OC=O)]$ (8). Reaction with diphenylketene 7 gives the cyclodimeric 1:1 addition product $(Cp_2ZrOCH_2OC=CPh_2)_2$ (10) via the mono-insertion product 9. Similarly, treatment of 7 with t-butylisocyanate yields the intermediate complex $[(Cp_2ZrOCH_2)(Cp_2ZrOCH_2OC=NCMe_3)]$ (11) which gives the final product $(Cp_2ZrOCH_2)(Cp_2ZrOCH_2OC=NCMe_3)]$ (11) which gives the final product $(Cp_2ZrOCH_2OC=NCMe_3)_2$ (12). Here two five-membered metallacycles are joined together by oxygen bridges via a central four-membered Zr_2O_2 metallacycle. Complex 12 was characterized by X-ray diffraction. It crystallizes in space group $P2_1/n$ with cell parameters a 10.142(1), b 17.949(2), c 12.001(1) Å, $\beta = 114.27(1)^\circ$; Z = 2, R = 0.055, $R_w = 0.054$.

Zusammenfassung

 $(\eta^2$ -Formaldehyd)zirconocen-Dimer $(Cp_2ZrOCH_2)_2$ (7) reagiert mit CO₂ unter Einschiebung in die Zirconium-Kohlenstoff-Bindung des Metallaoxirans zu $[(Cp_2ZrOCH_2)(Cp_2ZrOCH_2OC=O)]$ (8). Mit Diphenylketen bildet 7 über die Zwischenstufe des analogen Monoinsertionsproduktes 9 das cyclodimere 1:1-Additionsprodukt $(Cp_2ZrOCH_2OC=CPh_2)_2$ (10). Die Umsetzung von 7 mit tert-Butylisocyanat liefert über das Zwischenprodukt $[(Cp_2ZrOCH_2)(Cp_2ZrOCH_2OC=NCMe_3)]$ (11) die Verbindung $(Cp_2ZrOCH_2OC=NCMe_3)_2$ (12), bei der zwei metallacyclische Fünfringsysteme über Sauerstoffbrücken eines zentralen Zr_2O_2 -Vierrings miteinander verknüpft sind. Die Verbindung 12 wurde durch eine Röntgenstrukturanalyse charakterisiert. Sie kristallisiert in der Raumgruppe $P2_1/n$ mit den Zellparametern a 10.142(1), b 17.949(2), c 12.001(1) Å, β 114.27(1)°, Z = 2, R = 0.055, $R_w = 0.054$.

Einleitung

Viele σ -Organometallverbindungen R-M addieren sich als nucleophile Reagenzien an Kohlendioxid unter Bildung von Carboxylaten. Mit den isoelektronischen Heterokumulenen X = C = Y (X, Y = S, NR, O) entstehen analog Carbonsäurederivate oder, ausgehend von Ketenen, Metallenolate. Es sind viele einfache Beispiele für solche Reaktionen von Titan-, Zirconium- oder Hafniumalkyl- und -hydridverbindungen bekannt. So addiert sich z.B. Diphenylketen an Zirconocendimethyl unter Bildung des Metallocen-bisenolats Cp₂Zr[OC(CH₃)= CPh₂]₂. Mit Heterokumulenen X=C=Y werden meist Chelatkomplexe erhalten (z.B. Cp₂ZrCl(-O-CH=N-CMe₃) durch Hydrozirconierung von t-Butylisocyanat) [1].

Alternativ kann die CO₂-Fixierung mit reaktiven Reagenzien (1) vom $(\eta^2$ -Olefin)metallkomplex-Typ erreicht werden. Vermutlich verläuft dabei die Verknüpfungsreaktion mit dem Heterokumulen-C(*sp*)-Zentrum über $(\eta^2$ -CO₂)ML_n-Zwischenstufen (z.B. 2) [2]. Auch die Umwandlung anderer Heterokumulene X=C=Y sowie von Ketenen kann auf diesem nach seiner Reaktionscharakteristik nichtnucleophilen Weg erreicht werden [3].

Die Verknüpfungsreaktionen nach Gl. 1 zeigen andere Selektivitätseigenschaften als die nucleophilen X=C=Y-Umwandlungen. So addiert z.B. das Butadiendianion-Äquivalent "Butadien-Magnesium" elektrophile Reagenzien an die Kohlenstoffatome 1 und 2 [4], während (Butadien)zirconocen-Komplexe mit z.B. Isocyanaten [analog Gl. (1)] unter 1,4-Addition zu 6 reagieren [5].

 $(\eta^2$ -Aldehyd)- oder $(\eta^2$ -Keton)komplexe von Übergangsmetallen der linken Seite des Periodensystems können sich als heteroatomhaltige Reagenzien $(\eta^2$ -a=b)ML_n

(1) gemäss Gl. 1 an Heterokumulenverbindungen addieren [6]. Von besonderem Interesse sind dabei die Reaktionen des (η^2 -Formaldehyd)zirconocens. Dieses Reagenz ist durch eine von uns vor kurzem entwickelte Synthese in dimerer Form gut zugänglich [7]. Die Addition von side-on gebundenem CH₂O an Heterokumulene X=C=Y in der Koordinationssphäre des Zirconiums nach Gl. 1 ist eine attraktive, mechanistisch verschiedene Alternative zur Verwendung üblicher nucleophiler Methanoldianion-Äquivalente [8]. Es werden metallacyclische Derivate der α -Hydroxyessigsäure erhalten. Die Synthese und besonderen Struktureigenschaften von Systemen mit den resultierenden Bausteinen Cp₂ZrOCH₂C(=Y)X werden hier an einigen ausgewählten Beispielen vorgestellt.

Ergebnisse und Diskussion

Die Hydrozirconierung von Kohlenmonoxid nach Floriani et al. liefert die zweikernige Metallaoxiran-Verbindung Cp₂ZrCl($-OCH_2$)ZrCp₂Cl in guter Ausbeute [9]. Durch Umsetzung mit zwei Moläquivalenten Methyllithium in Ether haben wir daraus (η^2 -Formaldehyd)zirconocen hergestellt, isoliert als Cyclodimer 7 in 67% Ausbeute [7]. Von dem Metallaoxirankomplex 7 liegt eine Röntgenstrukturanalyse vor. Die ZrOCH₂-Einheit zeigt dabei die Bindungslängen C-O 1.395(4) Å, Zr-C 2.243(3) Å und Zr-O 2.103(2) Å. Die verbrückende Metall-Sauerstoff-Bindung (Zr-O^{*}: 2.200(2) Å) ist etwas länger als die Zr-O Bindung im Dreiring. Die Verbindung 7 zeigt sehr einfache NMR-Spektren (¹H, in CDCl₃: δ 5.89, Cp, 2.42, CH₂; ¹³C, in CDCl₃: δ 64.0, CH₂). Charakteristisch ist der hohe Wert der ¹J(CH)-Kopplungskonstante der Methylengruppe im heterocyclischen Dreiringsystem von 153 Hz.

In einem orientierenden Versuch haben wir $(Cp_2ZrOCH_2)_2$ 7 in einem abgeschmolzenen NMR-Rohr als Suspension in CD_2Cl_2 mit Kohlendioxid umgesetzt. Nach ca. 2 h bei Raumtemperatur hat sich der Niederschlag völlig aufgelöst. Es wird ¹H NMR-spektroskopisch neben wenig Ausgangsmaterial (7) ein neues Reaktionsprodukt (8) festgestellt (Verhältnis ca. 5/95). Unter den gewählten Bedingungen ist 8 jedoch nicht stabil. Im Laufe von 12 h hat sich diese neue Verbindung vollständig zu einem komplexen Produktgemisch zersetzt.

Die Verbindung 8 zeigt im ¹H NMR-Spektrum (CD₂Cl₂) Singuletts bei δ 5.97, 5.95 (je 10H, Cp), 3.86 und 2.66 (je 2H, CH₂). Wegen der charakteristischen ¹J(CH)-Kopplungskonstante von 155 Hz ist das ¹³C NMR Signal bei δ 66.8 der Methylengruppe einer intakten Cp₂ZrOCH₂-Einheit zuzuordnen. Die Verbindung 8 zeigt eine zweite ¹³C NMR CH₂-Resonanz bei δ 84.2 (¹J(CH) 136 Hz). Im IR-Spektrum findet man eine Carbonylstreckschwingungsbande bei ν 1691 cm⁻¹. Diese spektroskopischen Daten legen es nahe, der Verbindung 8 die Struktur eines zweikernigen Metallkomplexes zuzuordnen, bei dem ausgehend von 7 die Insertion von CO₂ in eine der beiden Cp₂ZrOCH₂-Einheiten erfolgt ist.

Ahnlich verläuft die Reaktion von 7 mit Diphenylketen. Die Umsetzung äquimolarer Mengen des Metallkomplexes 7 und Ph₂C=C=O ist bei Raumtemperatur in Toluol nach ca. einer Stunde vollständig. Es wird nach üblicher Aufarbeitung der zweikernige metallacyclische Zirconiumenolat-Komplex 9 in 90%iger Ausbeute isoliert. (¹H/¹³C NMR in Tetrahydrofuran- d_8 : δ 2.89/67.0 (¹J(CH) 154 Hz, [Zr]OCH₂); δ 4.12/75.9 (¹J(CH) 143 Hz, [Zr]OCH₂C[=CPh₂]O). In einer langsameren Reaktion wird nachfolgend auch die zweite Metallaoxiraneinheit mit Diphenylketen verknüpft. Man erhält eine sehr schwerlösliche Verbindung, bei der es sich nach dem Ergebnis der Elementaranalyse und den spektroskopischen Daten (MS, IR, ¹H NMR) vermutlich um den zweikernigen metallacyclischen Zirconiumenolat-Komplex 10 handelt.

Mit t-Butylisocyanat reagiert $(Cp_2ZrOCH_2)_2$ (7) erst bei erhöhter Temperatur. Die Reaktion mit dem Heterokumulen bei 120°C (1 Woche) liefert das 1:2-Verknüpfungsprodukt $[Cp_2ZrOCH_2C[=NC(CH_3)_3]O]_2$ (12) in 90%iger Ausbeute (IR: ν (C=N) 1626 cm⁻¹; ¹H/¹³C NMR (THF- d_8): δ 4.27/76.0, ¹J(CH) 144 Hz (CH₂)). Als Zwischenprodukt dieser Reaktion haben wir in einem separaten Versuch die Verbindung 11 ¹H NMR-spektroskopisch identifiziert (Benzol- d_6 : δ 2.66 ([Zr]OCH₂), 4.11 (CH₂ im Fünfring)).

Aus Chloroform haben wir Kristalle für die Röngenstrukturanalyse von 12 erhalten, deren Ergebnisse in den Tabellen 1 und 2 zusammengefasst sind. Der zweikernige Metallkomplex besitzt ein tricyclisches Grundgerüst mit einem kristallographischen Inversionszentrum im zentralen Zr_2O_2 -Vierring. Annelliert damit sind metallacyclische Fünfringsysteme [Zr]OCH₂C[=NC(CH₃)₃]O, gebildet durch formale Insertion der O=C-Einheit des Isocyanatreagenzes in die Zirconium-Kohlen-

Fig. 1. Molekülstruktur von 12 im Kristall.

stoff-Bindung der $[Zr]OCH_2$ -Metallaoxiraneinheit des Ausgangsmaterials 7. Die exocyclische C=N-C(CH₃)₃-Einheit (C(1)-N 1.280(6) Å) besitzt ein sp²-hybridisiertes Stickstoffatom [10]. Das Kohlenstoffatom C(3) des t-Butylsubstituenten liegt in der Fünfringebene und ist an der N=C(1) Doppelbindung Z-ständig angeordnet.

Jeweils zwei metallacyclische Fünfringsysteme sind über Sauerstoffbrücken zum Tricyclus verknüpft. Dabei sind die verbindenden Metall-Sauerstoff-Bindungen, wie häufig für Verbindungen dieses Typs beobachtet [11], etwas länger als die M-O Bindungen zum dreibindigen Sauerstoff im lateralen Ringsystem (Zr-O(2)* 2.207(3) Å vs. Zr-O(2) 2.173(3) Å). Die beteiligten Ringsysteme sind planar (Winkelsumme zentralen Vierring (Zr, O(2), Zr*, O(2)*): 360°; im Fünfring im (Zr,O(1),C(1),C(2),O(2)): 539.8°). Die Oxonium-Sauerstoffe (O(2),O(2)*) sind trigonal planar (Summe der Winkel Zr,O(2),C(2)/Zr,O(2),Zr*/C(2),O(2),Zr*: 360°), auch das wird bei vielen ähnlich aufgebauten Verbindungen beobachtet [11,12]. Der σ -Bindungswinkel am Zirconium beträgt im Fünfring 71.9(1)° (O(2),Zr,O(1)) und ist damit viel kleiner als in offenkettigen Cp₂ZrX₂-Verbindungen [13]. Vermutlich eröffnet erst dies die Möglichkeit zur effektiven Anlagerung eines weiteren Donorliganden (hier: O(2)* des zweiten Fünfringsystems) [14]. Der O(1),Zr,O(2)*-Winkel (136.7(1)°) ist grösser als bei vielen fünffach-koordinierten Metallocenkomplexen Cp₂ZrX₂L mit formaler 18-Elektronen-Konfiguration am Metall [15].

Das Kristallgitter enthält zwei kristallographisch symmetrieäquivalente Moleküle Chloroform pro Molekül 12. Dabei deutet der kurze Abstand des Cl₃C-H Wasserstoffs zum C=N-C(CH₃)₃ Stickstoff ($d(N \cdots H)$ 2.18 Å) auf eine schwache Wasserstoffbrückenbindung zum freien Elektronenpaar des sp^2 -hybridisierten Stickstoffs hin.

Experimenteller Teil

Alle Arbeiten mit Organometallverbindungen wurden unter Ausschluss von Luft und Feuchtigkeit mit wasserfreien Lösungsmitteln durchgeführt. t-Buylisocyanat wurde vor Gebrauch mit P_4O_{10} getrocknet und destilliert. Für weitere allgemeine

Fig. 2. Projektion der Elementarzelle von $12 \cdot 2$ CHCl₃ (vermutlich im Kristall vorliegende N ··· HC-Brückenbindungen sind markiert).

Angaben und verwendete Spektrometer siehe [9b]. Die Elementaranalysen wurden am Institut für Anorganische Chemie der Universität Würzburg durchgeführt.

Reaktion von $(\eta^2$ -Formaldehyd)zirconocen-Dimer 7 mit Kohlendioxid

Eine Probe von 20 mg (40 μ mol) des Komplexes 7 werden in 0.5 ml CD₂Cl₂ in einem NMR-Rohr suspendiert. In die farblose Mischung wird CO₂ eingeleitet. Das NMR-Rohr wird abgeschmolzen. Nach 2 h hat sich der Niederschlag vollständig gelöst. Die gelbe Lösung enthält zu ca. 85% das CO₂-Monoinsertionsprodukt **8**. Fp (DSC): 54°C (Zers.) IR (KBr): ν (C=O) = 1691 cm⁻¹. ¹H NMR (CD₂Cl₂): δ 5.97, 5.95 (s, je 10H, Cp), 3.86 (s, 2H, CH₂CO), 2.66 (s, 2H, ZrOCH₂). ¹³C NMR

Tabelle 1

Ausgewählte	: Bindungslängen (/	A) und	-winkel ((")	von	12	Z
-------------	---------------------	--------	-----------	-----	-----	----	---

$\overline{Zr-O(1)}$	2.124(3)	Zr-C(13)	2.523(9)	
Zr-O(2)	2.173(3)	Zr-C(14)	2.544(7)	
Zr-O(2)*	2.207(3)	Zr-C(15)	2.565(6)	
Zr-C(7)	2.519(6)	Zr-C(16)	2.537(7)	
Zr-C(8)	2.545(7)	O(1)-C(1)	1.313(6)	
Zr-C(9)	2.530(7)	O(2)-C(2)	1.426(5)	
Zr-C(10)	2.540(7)	N-C(1)	1.280(6)	
Zr-C(11)	2.531(7)	N-C(3)	1. 477(7)	
Zr-C(12)	2.535(9)	C(1)-C(2)	1.489(8)	
$O(2)^{*}-Zr-O(2)$	64.8(1)	C(2)-O(2)-Zr	119.7(4)	
$O(2)^{*}-Zr-O(1)$	136.7(1)	C(3) - N - C(1)	122.1(4)	
O(2) - Zr - O(1)	71.9(1)	C(2)-C(1)-N	117.8(5)	
C(1)-O(1)-Zr	124.0(3)	C(2)-C(1)-O(1)	114.0(4)	
$Zr^{*} - O(2) - C(2)$	125.1(4)	N-C(1)-O(1)	128.1(5)	
Zr*-O(2)-Zr	115.2(1)	C(1)-C(2)-O(2)	110.2(5)	

Atom	x	у	z	
Zr	0.0701(1)	0.0178(1)	0.3826(1)	
Cl(1)	0.0880(2)	0.5729(1)	0.3935(2)	
Cl(2)	0.2642(2)	0.7048(1)	0.4351(2)	
Cl(3)	-0.0230(3)	0.7045(1)	0.2465(2)	
O(1)	0.0811(4)	0.1357(2)	0.3744(3)	
O(2)	-0.0012(3)	0.0645(2)	0.5155(3)	
N	0.0356(4)	0.2525(2)	0.4359(4)	
C(1)	0.0402(5)	0.1813(3)	0.4397(4)	
C(2)	-0.0016(8)	0.1433(3)	0.5305(6)	
C(3)	0.0789(6)	0.2955(3)	0.3515(4)	
C(4)	0.0562(7)	0.3780(3)	0.3727(5)	
C(5)	0.2379(6)	0.2832(3)	0.3799(6)	
C(6)	-0.0157(7)	0.2769(3)	0.2195(5)	
C(7)	0.2807(7)	- 0.0672(3)	0.4160(7)	
C(8)	0.3023(6)	-0.0436(4)	0.5305(7)	
C(9)	0.3287(6)	0.0320(4)	0.5379(7)	
C(10)	0.3294(7)	0.0534(4)	0.4278(9)	
C(11)	0.3002(7)	-0.0065(4)	0.3542(7)	
C(12)	-0.177(1)	-0.0205(9)	0.2251(6)	
C(13)	-0.1558(9)	0.0507(6)	0.1971(7)	
C(14)	-0.054(1)	0.0505(4)	0.1568(6)	
C(15)	-0.0079(8)	- 0.0169(6)	0.1571(5)	
C(16)	-0.079(1)	- 0.0632(4)	0.2011(7)	
C(17)	0.0881(7)	0.6715(3)	0.3914(5)	

(CD₂Cl₂): & 160.2 (CH₂CO), 111.1 (¹J(CH) 173 Hz, Cp), 108.6 (¹J(CH) 172 Hz, Cp), 84.2 (¹J(CH) 136 Hz, CH₂CO), 66.8 (¹J(CH) 155 Hz, ZrOCH₂).

Reaktion von 7 mit Diphenylketen

Tabelle 2

Atomkoordinaten von 12

(a) 0.37 g (0.74 mmol) 7 werden in 20 ml Toluol suspendiert. Man gibt bei 0 °C 0.14 g (0.74 mmol) Diphenylketen zu. Die Reaktionsmischung wird anschliessend für 1 h bei Raumtemperatur gerührt. Die resultierende klare Lösung wird auf ein Volumen von 10 ml eingeengt. Beim Abkühlen auf -30 °C fällt das Produkt 9 als schwach gelblicher feinkristalliner Niederschlag aus, der abfiltriert und mit Pentan gewaschen wird. Ausbeute: 0.47 g (90%), Fp (DSC) = 239 °C (Zers.). Anal. Gef.: C 62.34, H 5.18. C₃₆H₃₄O₃Zr₂ (697.10) ber.: C 62,03, H 4.92%. MS (70 eV), m/z = 694 (8%, M⁺), 664 (36), 465 (31), 407 (100), 390 (25), 220 (60), 167 (83). ¹H NMR (THF-d₈): $\delta = 7.6-6.8$ (m, 10H, Ph), 6.17, 5.89 (s, je 10H, Cp), 4.12 (s, 2H, OCH₂OC=), 2.89 (s, 2H, ZrOCH₂). ¹³C NMR (THF-d₈): $\delta = 161.7$ (OC=CPh₂), 143.7, 142.8 (²J(CH) = 7 Hz, *ipso*-C, Ph), 132.7, 129.2, 127.8, 126.5, 123.3 (CH der Phenylgruppen), 113.4 (¹J(CH) 172 Hz, Cp), 108.3 (¹J(CH) 171 Hz, Cp), 107.5 (OC = CPh₂), 75.9 (¹J(CH) 143 Hz, OCH₂OC=), 67.0 (¹J(CH) 154 Hz, ZrOCH₂).

(b) Zu einer Suspension von 0.36 g (0.72 mmol) 7 in 20 ml Toluol gibt man 0.28 g (1.44 mmol) Diphenylketen bei Raumtemperatur zu. Nach ca. 10 Min hat sich eine klare gelborangefarbene Lösung gebildet. Man rührt die Reaktionslösung noch für 12 Stunden bei Raumtemperatur. Die resultierende Suspension wird filtriert. Der weisse Niederschlag wird mit Pentan gewaschen und im Vakuum getrocknet.

Ausbeute an 10: 0.55 g (86%), Fp 337 °C (Zers.). Anal. Gef.: C 67.40, H 5.07. $C_{50}H_{44}O_4Zr_2$ (891.34) ber.: C 67.38, H 4.98%. MS (70 eV), m/z = 888 (0.2%, M^+), 664 (5), 599 (4), 457 (7), 444 (52), 407 (21), 367 (22), 224 (34), 222 (40), 220 (100). ¹H NMR (THF- d_8): $\delta = 7.6-6.9$ (m, 20H, Ph), 6.19 (s, 20H, Cp), 4.25 (s, 4H, CH₂).

Umsetzung von 7 mit t-Butylisocyanat

(a) Eine Probe von 40 mg (80 μ mol) 7 wird in 0.6 ml Benzol- d_8 suspendiert. Man gibt 18.2 μ l (160 μ mol) t-Butylisocyanat (ρ 0.87 g/ml) zu. Die sich rasch gelbfärbende Reaktionsmischung wird in einem NMR-Rohr eingeschmolzen und im Autoklav auf 120°C erhitzt. Nach drei Tagen wird ¹H NMR-spektroskopisch eine Mischung von 11, 12 und t-Butylisocyanat gefunden. Nach weiteren vier Tagen bei 120°C kann im ¹H NMR-Spektrum nur noch 12 beobachtet werden. Die Verbindung 11 wird nur durch das ¹H NMR-Spektrum in Benzol- d_6 charakterisiert: $\delta = 5.89$, 5.51 (s, je 10H, Cp), 4.11 (s, 2H, OCH₂O), 2.66 (s, 2H, ZrOCH₂), 1.69 (s, 9H, t-Butyl).

(b) In einem 100 ml Schlenkgefäss werden 0.66 g (1.31 mmol) 7 in 20 ml Toluol suspendiert. Man gibt 0.26 g (2.62 mmol) t-Butylisocyanat zu und erhitzt für eine Woche auf 120 °C. Die braune Reaktionsmischung wird heiss filtriert. Beim Abkühlen des Filtrates auf 0 °C fällt das Produkt 12 in Form farbloser Kristalle aus. Ausbeute 0.83 g (90%). Fp 290 °C (Zers.). Anal. Gef.: C 54.66, H 6.29, N 3.95. $C_{32}H_{42}N_2O_4Zr_2$ (701.13) ber.: C 54.82, H 6.04, N 4.00%. MS (70 eV), m/z = 683 (0.3%, $M^+ - CH_3$), 633 (5), 603 (8), 569 (4), 550 (5), 520 (7), 490 (25), 407 (23), 220 (100), IR (KBr): ν (C=N) 1626 cm⁻¹. ¹H NMR (THF- d_8): $\delta = 6.30$ (s, 20H, Cp), 4.27 (s, 4H, CH₂), 1.27 (s, 18H, t-Butyl). ¹³C NMR (THF- d_8): $\delta = 162.6$ (C=N), 114.0(¹J(CH) 172 Hz, Cp), 76.0 (¹J(CH) 144 Hz, CH₂), 51.9 (s) und 31.3 (¹J(CH) 125 Hz, t-Butyl).

Röntgenstrukturanalyse von 12

Kristalle zur Röntgenstrukturanalyse wurden durch Umkristallisieren von 12 aus Chloroform erhalten. Anal. Gef.: C 43.59, H 4.86, N 2.97. $C_{32}H_{42}N_2O_4Zr_2 \cdot 2$ CHCl₃ (939.9) ber.: C 43.45, H 4.72, N 2.98. Raumgruppe $P2_1/n$, a 10.142(1), b 17.949(2), c 12.001(1) Å, β 114.27(1)°, V 1991.7 Å³, d_{ber} 1.57 g cm⁻³, μ 9.58 cm⁻¹, Z = 2, λ 0.71069 Å, gemessene Reflexe 4881 ($\pm h, + k, + 1$), sin θ/λ_{max} 0.65, unabhängige Reflexe 4521, beobachtete Reflexe 3425, verfeinerte Parameter 217, R = 0.055, $R_w = 0.054$, max. Restelektronendichte 2.44 e Å⁻³ (um Zr). Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, 7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 54382, des Autors und des Zeitschriftenzitats angefordert werden.

Dank

Diese Arbeit wurde vom Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft und der Alfried Krupp von Bohlen und Halbach-Stiftung gefördert. Dr. M. Mena dankt dem Ministerio de Educacion y Ciencia, Madrid, und der Alexander von Humboldt-Stiftung für ein Stipendium.

Literatur

- (a) Übersicht: A. Behr, Angew. Chem., 100 (1988) 681; (b) siehe z.B.: S. Gambarotta, S. Strologo, C. Floriani, A. Chiesi-Villa und C. Guastini, Inorg. Chem., 24 (1985) 654, J. Am. Chem. Soc., 107 (1985) 6278; P. Jernakoff und N.J. Cooper, ibid., 111 (1989) 7424 und dort zitierte Literatur.
- 2 Vergl. z.B.: G.S. Bristow, P.B. Hitchcock und M.F. Lappert, J. Chem. Soc., Chem. Commun., (1981) 1145; T. Herskovitz und L.J. Guggenberger, J. Am. Chem. Soc., 98 (1976) 1615; M. Aresta und C.F. Nobile, J. Chem. Soc., Dalton Trans., (1977) 708; R. Alvarez, E. Carmona, M.L. Poveda und R. Sánchez-Delgado, J. Am. Chem. Soc., 106 (1984) 2731; H.G. Alt, K.-H. Schwind und M.D. Rausch, J. Organomet. Chem., 321 (1987) C9.
- 3 I.S. Kolomnikov, T.S. Lobeeva, V.V. Gorbachevskaya, G.G. Aleksandrov, Yu.T. Struchkov und M.E. Vol'pin, J. Chem. Soc., Chem. Commun., (1971) 972; B. Demerseman, R. Mahé und P.H. Dixneuf, ibid., (1984) 1394; D. Walther, E. Dinjus, H. Görls, J. Sieler, O. Lindqvist und L. Andersen, J. Organomet. Chem., 286 (1985) 103; S.A. Cohen und J.E. Bercaw, Organometallics, 4 (1985) 1006; H. Hoberg und K. Jenni, J. Organomet. Chem., 322 (1987) 193; H.G. Alt, G.S. Herrmann, M.D. Rausch und D.T. Mallin, ibid., 356 (1988) C53; B. Hessen, A. Meetsma und J.H. Teuben, J. Am. Chem. Soc., 110 (1988) 4860.
- 4 K. Fujita, Y. Ohnuma, H. Yasuda und H. Tani, J. Organomet. Chem., 113 (1976) 201; J.H. Bahl, R.B. Bates, W.A. Beavers und N.S. Mills, J. Org. Chem., 41 (1976) 1620; W.J. Richter, Angew. Chem., 94 (1982) 298; U. Dorf, K. Engel, G. Erker, Organometallics, 2 (1983) 462; G. Erker, Angew. Chem., 101 (1989) 411 und dort zitierte Literatur.
- 5 H. Yasuda und A. Nakamura, Angew. Chem., 99 (1987) 745; H. Yasuda, T. Okamoto, Y. Matsuoka, A. Nakamura, Y. Kai, N. Kanehisa und N. Kasai, Organometallics, 8 (1989) 1139; G. Erker, F. Sosna, R. Zwettler, C. Krüger, Organometallics, 8 (1989) 450.
- 6 G. Fachinetti, C. Biran, C. Floriani, A. Chiesi-Villa und C. Guastini, J. Am. Chem. Soc., 100 (1978) 1921.
- 7 G. Erker, U. Hoffmann, P. Betz, C. Krüger, Angew. Chem., 101 (1989) 644; G. Erker, U. Hoffmann, R. Zwettler, C. Krüger, J. Organomet. Chem., 367 (1989) C15; G. Erker, F. Sosna, U. Hoffmann, J. Organomet. Chem., 372 (1989) 41.
- 8 Siehe z.B.: D. Seebach und N. Meyer, Angew. Chem., 88 (1976) 484.
- 9 (a) G. Fachinetti, C. Floriani, A. Roselli und S. Pucci, J. Chem. Soc., Chem. Commun., (1978) 269; S. Gambarotta, C. Floriani, A. Chiesi-Villa und C. Guastini, J. Am. Chem. Soc., 105 (1983) 1690; (b) G. Erker, R. Schlund, C. Krüger, Organometallics, 8 (1989) 2349.
- 10 Für repräsentative Vergleichswerte siehe: F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen und R. Taylor, J. Chem. Soc., Perkin Trans. II, (1987) S1.
- 11 G.S. Bristow, P.B. Hitchcock und M.F. Lappert, J. Chem. Soc., Chem. Commun., (1982) 462; K. Kropp, V. Skibbe, G. Erker, C. Krüger, J. Am. Chem. Soc., 105 (1983) 3353; G. Erker, U. Dorf, P. Czisch, J.L. Petersen, Organometallics, 5 (1986) 668; S. Stella und C. Floriani, J. Chem. Soc., Chem. Commun., (1986) 1053; G. Alan, G.L. Hillhouse, R.T. Lum, S.L. Buchwald und A.L. Rheingold, J. Am. Chem. Soc., 110 (1988) 7215. Vergl. auch: I.D. Williams, S.F. Pedersen, K.B. Sharpless und S.J. Lippard, ibid., 106 (1984) 6430.
- 12 G. Erker, U. Dorf, J.L. Atwood, W.E. Hunter, J. Am. Chem. Soc., 108 (1986) 2251; G. Erker, R. Schlund, C. Krüger, J. Chem. Soc., Chem. Commun., (1986) 1403.
- 13 D.J. Cardin, M.F. Lappert und C.L. Raston, Chemistry of Organo-Zirconium and -Hafnium Compounds, J. Wiley, New York, 1986.
- 14 H. Takaya, M. Yamakawa und K. Mashima, J. Chem. Soc., Chem. Commun., (1983) 1283. Siehe auch: G. Erker, U. Dorf, R. Mynott, Y.-H. Tsay, C. Krüger, Angew. Chem., 97, (1985) 572; G. Erker, P. Czisch, R. Schlund, K. Angermund, C. Krüger, Angew. Chem., 98 (1986) 356.
- 15 G. Erker, W. Frömberg, K. Angermund, R. Schlund, C. Krüger, J. Chem. Soc., Chem. Commun., (1986) 372; G. Erker, R. Zwettler, C. Krüger, R. Schlund, I. Hyla-Kryspin, R. Gleiter, J. Organomet. Chem., 345 (1988) C15; I. Hyla-Kryspin, R. Gleiter, C. Krüger, R. Zwettler, G. Erker, Organometallics, 9 (1990) 517.